If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2-40k=0
a = 5; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·5·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*5}=\frac{0}{10} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*5}=\frac{80}{10} =8 $
| 4=5y-y^2 | | 69-u=181 | | 2x+7+8x=27 | | 114=284-x | | 4x+3x+20+x=180 | | 41=2x+13 | | 174-u=260 | | v+32/6=9 | | 3/4x9=1/4 | | 13=2f+513=2f+5 | | 14+w=41 | | -5-3x=-1x+7 | | 4x-25=11 | | z5+2=−73Z= | | 273-w=78 | | -49(w+10=-24 | | 4(x-1)+2=2(2x-1)-x | | (n-13)-3=-72 | | x+60=3x-70 | | 9u+45=6(u+8) | | 9u+1-4(-3u-1)=5(u-1) | | 50-15b=105-8b+44-166 | | 4g+g-3=8g+1-7 | | 2w-10=30 | | 12x-3+7x=90 | | 8y-33=5y÷9 | | 2850+175.75h=6189.25 | | 100+0.40x=50+0.60x | | 18w=50 | | 100+0.40x=50+0,60 | | 15=x/5+8 | | -2x-2=-1x+4 |